Project Proposal
 Sport Stat - Olympics Data

Audhi Aprilliant

```
audhiaprilliant.github.io
```

As a scientist in the Sport field, we are asked to do deep analysis which will be focused through data visualization
The analysis will find out any trends in Olympics games such as the country that dominating in certain sports for 120 years and qualitative analysis to answer the question why this phenomenon happens

Further, our journey steps to the side of statistics with regression problem to estimate the missing value in certain variables

It's interesting to find out specific, rightful, and useful regression method to handle this problem

ASSUMPTIONS

The scopes of research are listed:

FIRST

Each rows is the unique person in difference time of period

SECOND

The chosen columns must have high correlation

QUESTIONS

To ensure the effectiveness of the research, the following question will be answered systematically:

APPROACH

To ensure the effectiveness of the research, the following question will be answered systematically:

Several columns will be dropped because it has no enough correlation with the main analysis

To handle missing value, the linear regression and decision tree regressor will be compared

Evaluation metrics use root mean square error, mean absolute error, and Pearson correlation

Explanatory Data Analysis (EDA) is rightful method and mostly used to find out pattern in the whole data

Two tables are included. But for the main analysis, we only need the athlete event table

Height
Weight

EXPLORATION

	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	City	Sport	Event	Medal
0	1	A Dijiang	M	24.0	180.0	80.0	China	CHN	1992 Summer	1992	Summer	Barcelona	Basketball	Basketball Men's Basketball	NaN
1	2	A Lamusi	M	23.0	170.0	60.0	China	CHN	2012 Summer	2012	Summer	London	Judo	Judo Men's ExtraLightweight	NaN
2	3	Gunnar Nielsen Aaby	M	24.0	NaN	NaN	Denmark	DEN	1920 Summer	1920	Summer	Antwerpen	Football	Football Men's Football	NaN
3	4	Edgar Lindenau Aabye	M	34.0	NaN	NaN	Denmark/Sweden	DEN	1900 Summer	1900	Summer	Paris	Tug-OfWar	Tug-Of-War Men's Tug-Of-War	Gold
4	5	Christine Jacoba Aaftink	F	21.0	185.0	82.0	Netherlands	NED	$\begin{array}{r} 1988 \\ \text { Winter } \end{array}$	1988	Winter	Calgary	Speed Skating	Speed Skating Women's 500 metres	NaN

$\begin{aligned} & 0 \\ & 0 \end{aligned}$	<class 'pandas.core.frame. DataFrame'>				
	RangeIndex: 271116 entries, 0 to 271115				
	Data	columns	(total	15 column	
	\#	Column	Non-Nul	1 Count	Dtype
ㄷ	0	ID	271116	non-null	int64
	1	Name	271116	non-null	object
Ј	2	Sex	271116	non-null	object
\bigcirc	3	Age	261642	non-null	float64
U	4	Height	210945	non-null	float64
-	5	Weight	208241	non-null	float64
0	6	Team	271116	non-null	object
ᄃ	7	NOC	271116	non-null	object
O	8	Games	271116	non-null	object
¢	9	Year	271116	non-null	int64
으	10	Season	271116	non-null	object
는	11	City	271116	non-null	object
U	12	Sport	271116	non-null	object
(1)	13	Event	271116	non-null	object
-	14	Medal	39783 n	non-null	object
	dtypes: float64(3), int64(2), object(10)				

ID	0
Name	0
Sex	0
Age	9474
Height	60171
Weight	62875
Team	0
NOC	0
Games	0
Year	0
Season	0
City	0
Sport	0
Event	0
Medal dtype:	$\begin{aligned} & 231333 \\ & t 64 \end{aligned}$

$\xrightarrow{\sim}$	ID	135571
E	Name	134732
Ј	Sex	2
\bigcirc	Age	74
\bigcirc	Height	95
ᄃ	Weight	220
\bigcirc	Team	1184
(1)	NOC	230
(1)	Games	51
T	Year	35
$>$	Season	2
1	City	42
\bigcirc	Sport	66
C	Event	765
\bigcirc	Medal dtype:	64^{3}

Findings

Three important variables for deep analysis need manipulation. These are athlete's age, weight, and height. So, it needs to find out the best method to fill those missing value properly

EXPLORATION

Findings

According to those histogram, athlete's age and weight are right-skewed while the height is bell-shape, Normal distribution.

- The average of athlete's age is about 97 yo. It's unnatural. So, we need to do pre-processing
- The maximum of athlete's weight is about 214 kg . This is why the histogram would be rightskewed

EXPLORATION

Findings

The correlation is the statistic indicating the relationship between two variables in the data. After exploring the numerical variables, the correlation between athlete's weight and height is high.

ᄃ RMSE in CV - 1: 8.774727 and MAE: 6.258586	
	RMSE in CV - 2: 8.55525 and MAE: 6.065735
$\stackrel{\square}{\square}$	RMSE in CV - 3: 8.793303 and MAE: 6.19477
으	RMSE in CV - 4: 8.461461 and MAE: 6.039466
రె	RMSE in CV - 5: 8.589853 and MAE: 6.084789
	RMSE in CV - 6: 8.575798 and MAE: 6.123329
	RMSE in CV - 7: 8.577335 and MAE: 6.086527
0	RMSE in CV - 8: 8.65246 and MAE: 6.145842
U	RMSE in CV - 9: 8.91851 and MAE: 6.243718
	RMSE in CV - 10: 8.766976 and MAE: 6.186461
\bigcirc	Average of RMSE: 8.666567278592114
	Average of MAE: 6.142922312460948

	Age	Height	Weight
count	261642.000000	210945.000000	208241.000000
mean	25.556898	175.338970	70.702393
std	6.393561	10.518462	14.348020
min	10.000000	127.000000	25.000000
$\mathbf{2 5 \%}$	21.000000	168.000000	60.000000
$\mathbf{5 0 \%}$	24.000000	175.000000	70.000000
$\mathbf{7 5 \%}$	28.000000	183.000000	79.000000
$\mathbf{m a x}$	97.000000	226.000000	214.000000

Findings

The RMSE of prediction is about 8.66 where it is comparable with the standard deviation of response variable. So, the linear regression model is quite good. The model equation is:

Intercept: -118.8526691879782
Coefficient: 1.08081366279174

	fit_time	std_fit_time	mean_score_time	std_score_time	param_max_depth	param_min_samples_leaf	param_min_samples_split	params
0	0.133030	0.027070	0.004408	0.000763	10	2	2	\{max_depth': 10, 'min_samples leaf: 2, 'min.
1	0.156390	0.027086	0.005046	0.001747	10	2	50	[max depth': 10 , 'min_samples leaf: 2, 'min
2	0.186011	0.035946	0.005567	0.001250	10	2	75	\{max_depth': 10 , 'min_samples leaf: 2, 'min_.
3	0.150480	0.019991	0.004860	0.001055	10	2	100	\{max_depth': 10, 'min_samples_leaf: 2, 'min_.
4	0.162655	0.043891	0.004723	0.000673	10	2	120	\{'max_depth': 10, 'min_samples_leaf: 2, 'min

Grid-search to get optimum hyper parameters

```
Best hyperparameters :
    {'max depth': 10, 'min_samples_leaf': 100, 'min samples split': 2}
Best evaluation :
    -8.634977365979429
Best model of Decision Tree:
    DecisionTreeRegressor(max_depth=10, min_samples_leaf=100)

\section*{PRE-PROCESSING}

Regression Model RMSE Training RMSE Validation MAE Training MAE Validation Pearson Training Pearson Validation
\begin{tabular}{rrrrrrr}
\hline Linear Regression & 8.66746 & 8.68068 & 6.14282 & 6.1264 & 0.79574 & 0.79806 \\
Decision Tree Baseline & 8.62923 & 8.64788 & 6.11897 & 6.11031 & 0.79777 & 0.79977 \\
Decision Tree Grid-Search & 8.63171 & 8.65194 & 6.12056 & 6.11259 & 0.79764 & 0.79956
\end{tabular}

Linear regression is chosen because of its simplicity

\section*{DATA ANALYSIS}




\section*{Findings}
- For all Olympics event, United State of America (USA) have won the competition 16 times as general champion. Further, Uni Soviet has 8 times as general champion
- Despite not being \(1^{\text {st }}\) position, USA also active as runner up and \(3^{\text {rd }}\) position
- Uni Soviet is a rival of USA
- German and Canada are the other rival of USA with good potency

\section*{DATA ANALYSIS}



\section*{Findings}
- As the rival of USA, Uni Soviet has the strongest sport with highest number of medals, that is wrestling
- The USA's sport with highest number of medals is athletics (28). It doesn't include in top ten sport won by the Uni Soviet
- Rowing, boxing, and diving can be optimized by USA in order to beat the real rival of Uni Soviet

\section*{DATA ANALYSIS}


Season has not effect on the performance of USA in Olympics event 1986-2016

\section*{DATA ANALYSIS}



Number of medal 1896-1932
\begin{tabular}{rrrrrrr} 
& Year & NOC & Bronze & Gold & Silver & All \\
\hline \(\mathbf{6}\) & 1896 & GRE & 20 & 10 & 18 & 48 \\
\(\mathbf{1 3}\) & 1900 & FRA & 82 & 52 & 101 & 235 \\
\(\mathbf{4 2}\) & 1904 & USA & 125 & 128 & 141 & 394 \\
\(\mathbf{5 2}\) & 1906 & GRE & 30 & 24 & 48 & 102 \\
\(\mathbf{6 7}\) & 1908 & GBR & 90 & 147 & 131 & 368 \\
\(\mathbf{9 7}\) & 1912 & SWE & 25 & 103 & 62 & 190 \\
\(\mathbf{1 0 8}\) & 1920 & USA & 38 & 111 & 45 & 194 \\
\(\mathbf{1 3 2}\) & 1924 & USA & 50 & 98 & 46 & 194 \\
\(\mathbf{1 6 5}\) & 1928 & USA & 19 & 53 & 30 & 102 \\
\(\mathbf{1 9 9}\) & 1932 & USA & 64 & 91 & 68 & 223
\end{tabular}

\section*{Findings}
- In 1980, it was a year with the highest number of medals to be contested
- Of course there is high positive correlation between number of sport with the total medals won by country (0.883)

\section*{CONCLUSION}
- The USA dominates the Olympics event as the top three with highest medal in 1986-2016
- To defeat the USA in Olympics, other country must be discipline in sports training, especially athletics, swimming, and wrestling
- Other country are recommended to gain the medal from the list of 15 sport that had never been won by the USA in 1986-2016
```

